4,898 research outputs found

    'EngNT' - Engineering live neural tissue for nerve replacemen

    Get PDF
    Peripheral nerve injury can result in severe long-term disability and current clinical approaches for repairing large gaps rely on the nerve autograft. Engineered Neural Tissue (EngNT) has been developed to provide living aligned therapeutic cells in a stabilised collagen hydrogel, mimicking the key features of the autograft. This Perspective article will introduce the field and discuss the current stage of translation, highlighting the key opportunities for commercial and clinical development

    Engineered Tissues Made from Human iPSC-Derived Schwann Cells for Investigating Peripheral Nerve Regeneration In Vitro

    Get PDF
    Peripheral nerves have a limited ability to regenerate and current clinical approaches involving microsurgery give suboptimal recovery. Engineered tissues using aligned cellular collagen hydrogels can be used as in vitro models through the incorporation of human Schwann cells. However, primary human Schwann cells are difficult to obtain and can be challenging to culture. The ability to generate Schwann cells from human-induced pluripotent stem cells (hiPSCs) provides a more reliable cell source for modeling peripheral nerve tissue. Here, we describe protocols for generating hiPSC-derived Schwann cells and incorporating them into 3D engineered tissue culture models for peripheral nerve research

    Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation

    Get PDF
    Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering

    Repurposing small molecules to target ppar-γ as new therapies for peripheral nerve injuries

    Get PDF
    The slow rate of neuronal regeneration that follows peripheral nerve repair results in poor recovery, particularly where reinnervation of muscles is delayed, leading to atrophy and permanent loss of function. There is a clear clinical need to develop drug treatments that can accelerate nerve regeneration safely, restoring connections before the target tissues deteriorate irreversibly. The identification that the Rho/Rho-associated kinase (ROCK) pathway acts to limit neuronal growth rate is a promising advancement towards the development of drugs. Targeting Rho or ROCK directly can act to suppress the activity of this pathway; however, the pathway can also be modulated through the activation of upstream receptors; one of particular interest being peroxisome proliferator-activated receptor gamma (PPAR-γ). The connection between the PPAR-γ receptor and the Rho/ROCK pathway is the suppression of the conversion of inactive guanosine diphosphate (GDP)-Rho to active guanosine triphosphate GTP-Rho, resulting in the suppression of Rho/ROCK activity. PPAR-γ is known for its role in cellular metabolism that leads to cell growth and differentiation. However, more recently there has been a growing interest in targeting PPAR-γ in peripheral nerve injury (PNI). The localisation and expression of PPAR-γ in neural cells following a PNI has been reported and further in vitro and in vivo studies have shown that delivering PPAR-γ agonists following injury promotes nerve regeneration, leading to improvements in functional recovery. This review explores the potential of repurposing PPAR-γ agonists to treat PNI and their prospective translation to the clinic

    A Shock to the (Nervous) System: Bioelectricity Within Peripheral Nerve Tissue Engineering

    Get PDF
    The peripheral nervous system has the remarkable ability to regenerate in response to injury. However, this is only successful over shorter nerve gaps and often provides poor outcomes for patients. Currently, the gold standard of treatment is the surgical intervention of an autograft, whereby patient tissue is harvested and transplanted to bridge the nerve gap. Despite being the gold standard, over half of patients have dissatisfactory functional recovery after an autograft. Peripheral nerve tissue engineering aims to create biomaterials that can therapeutically surpass the autograft. Current tissue engineered constructs are designed to deliver a combination of therapeutic benefits to the regenerating nerve, such as supportive cells, alignment, extracellular matrix, soluble factors, immunosuppressants and other therapies. An emerging therapeutic opportunity in nerve tissue engineering is the use of electrical stimulation (ES) to modify and enhance cell function. ES has been shown to positively affect four key cell types, neurons, endothelial cells, macrophages, and Schwann cells, involved in peripheral nerve repair. Changes elicited include faster neurite extension, cellular alignment, and changes in cell phenotype associated with improved regeneration and functional recovery. This review considers the relevant modes of administration and cellular responses that could underpin incorporation of ES into nerve tissue engineering strategies

    An integrated theoretical-experimental approach to accelerate translational tissue engineering

    Get PDF
    Implantable devices utilizing bioengineered tissue are increasingly showing promise as viable clinical solutions. The design of bioengineered constructs is currently directed according to the results of experiments which are used to test a wide range of different combinations and spatial arrangements of biomaterials, cells and chemical factors. There is an outstanding need to accelerate the design process and reduce financial costs, whilst minimizing the required number of animal-based experiments. These aims could be achieved through the incorporation of mathematical modelling as a preliminary design tool. Here we focus on tissue-engineered constructs for peripheral nerve repair, which are designed to aid nerve and blood vessel growth and repair after peripheral nerve injury. We offer insight into the role that mathematical modelling can play within tissue engineering and motivate the use of modelling as a tool capable of improving and accelerating the design of nerve repair constructs in particular. Specific case studies are presented in order to illustrate the potential of mathematical modelling to direct construct design

    Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair

    Get PDF
    Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application

    Modelling-informed cell-seeded nerve repair construct designs for treating peripheral nerve injuries

    Get PDF
    Millions of people worldwide are affected by peripheral nerve injuries (PNI), involving billions of dollars in healthcare costs. Common outcomes for patients include paralysis and loss of sensation, often leading to lifelong pain and disability. Engineered Neural Tissue (EngNT) is being developed as an alternative to the current treatments for large-gap PNIs that show underwhelming functional recovery in many cases. EngNT repair constructs are composed of a stabilised hydrogel cylinder, surrounded by a sheath of material, to mimic the properties of nerve tissue. The technology also enables the spatial seeding of therapeutic cells in the hydrogel to promote nerve regeneration. The identification of mechanisms leading to maximal nerve regeneration and to functional recovery is a central challenge in the design of EngNT repair constructs. Using in vivo experiments in isolation is costly and time-consuming, offering a limited insight on the mechanisms underlying the performance of a given repair construct. To bridge this gap, we derive a cell-solute model and apply it to the case of EngNT repair constructs seeded with therapeutic cells which produce vascular endothelial growth factor (VEGF) under low oxygen conditions to promote vascularisation in the construct. The model comprises a set of coupled non-linear diffusion-reaction equations describing the evolving cell population along with its interactions with oxygen and VEGF fields during the first 24h after transplant into the nerve injury site. This model allows us to evaluate a wide range of repair construct designs (e.g. cell-seeding strategy, sheath material, culture conditions), the idea being that designs performing well over a short timescale could be shortlisted for in vivo trials. In particular, our results suggest that seeding cells beyond a certain density threshold is detrimental regardless of the situation considered, opening new avenues for future nerve tissue engineering

    Natural Biomaterials as Instructive Engineered Microenvironments That Direct Cellular Function in Peripheral Nerve Tissue Engineering

    Get PDF
    Nerve tissue function and regeneration depend on precise and well-synchronised spatial and temporal control of biological, physical, and chemotactic cues, which are provided by cellular components and the surrounding extracellular matrix. Therefore, natural biomaterials currently used in peripheral nerve tissue engineering are selected on the basis that they can act as instructive extracellular microenvironments. Despite emerging knowledge regarding cell-matrix interactions, the exact mechanisms through which these biomaterials alter the behaviour of the host and implanted cells, including neurons, Schwann cells and immune cells, remain largely unclear. Here, we review some of the physical processes by which natural biomaterials mimic the function of the extracellular matrix and regulate cellular behaviour. We also highlight some representative cases of controllable cell microenvironments developed by combining cell biology and tissue engineering principles

    A combined experimental and computational framework to evaluate the behavior of therapeutic cells for peripheral nerve regeneration

    Get PDF
    Recent studies have explored the potential of tissue-mimetic scaffolds in encouraging nerve regeneration. One of the major determinants of the regenerative success of cellular nerve repair constructs is the local microenvironment, particularly native low oxygen conditions which can affect implanted cell survival and functional performance. In vivo, cells reside in a range of environmental conditions due to the spatial gradients of nutrient concentrations that are established. Here we evaluate in vitro the differences in cellular behaviour that such conditions induce, including key biological features such as oxygen metabolism, glucose consumption, cell death, and VEGF secretion. Experimental measurements are used to devise and parameterise a mathematical model that describes the behaviour of the cells. The proposed model effectively describes the interactions between cells and their microenvironment and could in the future be extended, allowing researchers to compare the behaviour of different therapeutic cells. Such a combinatorial approach could be used to accelerate the clinical translation of nerve repair constructs by identifying which critical design features should be optimised when fabricating engineered nerve repair conduits. This article is protected by copyright. All rights reserved
    • …
    corecore